
Symmetric Integration Rules for Hypercubes 
I. Error Coefficients 

By J. N. Lyness 

Abstract. A compact notation is introduced to describe and systematise sym- 
metric integration rules and the Euler-Maclaurin expansion is used to describe their 
error terms. The application to cytolic rules is discussed especially in relation to 
the number of function evaluations required. This paper is devoted exclusively to 
theory, illustrated by well-known results. This theory leads to new powerful inte- 
gration rules which will be published shortly. 

1. Notation. We consider in this paper symmetric integration rules for obtaining 
numerical approximations to the integral of a function of n variables over an n- 
dimensional hypercube. There exist a large number of such rules. In this section we 
introduce a compact notation to describe them. We describe the notation in one 
dimension first. 

We suppose that we are interested in the integral of the function f(x) between 
the limits x = -a and x = a. We term this integral If. We also define a family of 
basic integration rules (R(a). Each (R(a) is an operator which, when applied to a 
function f(x), results in the rule which assigns equal weight to the coordinates 
x =-au and x = aa. Thus we may write 

ra 

( 1.1 ) If- f(x) dx 
a 

and 

(1.2) 61(a)f = alf(-aa) +f(aa)}. 

It is trivial to show that both I and Gt(a) are linear operators. 
All symmetric integration rules may be considered as the weighted sum of basic 

rules 6R(a). For example, Simpson's rule Rs may be written 

(1.3) Rs = 2 (R(O) + I R(1) 

and it is easy to verify by direct substitution of (1.2) into (1.3) that 

(1.4) RPf = a 
{f(-a) + 4f(0) + f(a) }. 

This integration rule is fully defined by the linear operator Rs in (1.3). Henceforth 
we shall use the term "integration rule" to denote the linear operator which gener- 
ates the rule in question. 

We term an integration rule R, such as Rs above, which is not itself a basic rule, 
a composite rule. All composite rules may be written in the form 

(1.5) R = E Zja(aj), 
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where the {j and aj are uniquely defined by R, t and vice versa. We consider in this 
paper only those rules which integrate a constant function exactly. Thus, if f(x) = 
1, we have to ensure that Rf = If. This leads to a condition on the fj of (1.5), 
namely, 

(1.6) 1= 

We now generalise these definitions to n dimensions. We are interested here in 
integration over a hypercube H of side 2a, bounded by the planes x, = i a 
(i = 1, 2, * n* , n). We define If as the true integral of f(xl , x2, *, x) over the 
hypercube H. Thus 

(1.7) If = Lf(x) dnx. 

As in one dimension, we define a family of basic rules 61(ala2 ... an). This rule 
assigns an equal weight to each of a symmetrically situated set of points. This set 
includes the point (ala, a2a, * , ana) and any point obtainable from this point 
by permuting the coordinates and/or reversing the sign of any or all of the co- 
ordinates. For example, the two-dimensional rule 61(a, f) may be expressed as 

8 (a)f - (2a) {f(aa, 3a) + f( -aa, #a) + f(aa, - #a) + f( -aa, -#a) 
(1.8) 8 

+ f(O3a, aa) + f( -na, aa) + f(#a, - aa) + f( -a, -aa)J. 

This requires eight function evaluations. If one of a or # is zero, or if a = ,, the 
expression contains only four terms while, using (1.8), we find 

(1.9) aR (O. O)f = (2a)2f(O, O) . 

In n dimensions the definition is a straightforward generalization of (1.8). In terms 
of the n ! permutations 

/1 2 *@ n 
(1.10) p = ) 

\PI Pa P." 

we write 

Rt (ai a2 ... an)f 

(1.11) =- E E Z Zf(Xi apa, X2aP2a, ..., Xn apa). 
n! x,=?j X2=?1 Xn=?l P 

Each basic rule 61(aia2 ... an) is defined by a set (ala2 ... an) of non-negative 
coefficients a. Any permutation of these coefficients a defines the same operator 
cR(aia2 ... an)* 

As in the case in one dimension, any n-dimensional integration rule R, having 
the same symmetry as the basic rules, may be expressed as a weighted sum of them. 
The most general composite rule is defined by the operator 

(1.12) R = E tj(i(a)a2(j) . . *n()) 

t We make the obvious restriction a3 # ak forj 5 k. 



262 J. N. LYNESS 

with the condition 

(1.13) Ei j- 1. 

This condition ensures that the integral of f(x) = 1 is given correctly by (1.12). 
The decomposition (1.12) is unique if we make the notational restrictions 

(1.12a) 0 _ ax(i) _ a2(j) < .. .< an (j) (allj), 

and there exists for all j $ k a subscript i such that 

(1.12b) Oti U) Fid ti (k), j ;= k. 

We now define the convolution product of two basic rules; this is another basic 
rule defined by 

(1.14) R(ala2 ... ar) *(R(03132 ... O38) = R (a1a2 ar#f1f32 * ). 

Thus the convolution product of an r-dimensional and s-dimensional basic rule is 
an integration rule in r + s dimensions. Remembering that the order of the pa- 
rameters that define a basic rule is immaterial, we see that this product is commu- 
tative and associative. 

To avoid later confusion it should be emphasized that the convolution product 
rule operator is not simply the product of two lower-dimensional rule operators, 
but is a normalized symmetric sum of many such products. We write, for an n- 
dimensional operator, n subscripts which indicate the dimension in which they 
operate. Thus 

(Ry (3)f(x, y) = a{f(x, Oa) + f(x, -Oa)I 

and 

ax (a) ay (O)f (X y ) 

- a2{f(aa, Oa) +f(-aa,iOa) +f(+ aa, - 3a) +f(-aa, - Oa)). 

This is not the same as R(a)*R(0), which is given by (1.8) above. We see that 

a (a)*61(13)f(x, y) = (a, f)f(x, y) 

- { (a() * )R ()f (x, y) + Rx (3) * Ry (a)f (x, y) I 

in agreement with (1.8). 
The n-dimensional convolution product of the (n - 1)-dimensional rule 

(R n-= (a) (R1a2 ... an-1) 

and the one-dimensional rule G({) = 61(a,) is given by 

(1) (n-1) 1 (,) (n1 . 

(R * 
(R 

= 
EJx 

(R 
X 

(R 

We use only the convolution product in the remainder of this paper and make no 
further use of subscripts to indicate the dimension in which a rule operates. 

As mentioned above, any symmetric rule R may be expressed as a sum of basic 
rules. We write 

R = E (jaj) 
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and 

S = E rkCk. 

We define the convolution product of R and S as the integration rule 

T = R*S = ( E tjaj)*( E = E ZE Ajrk(j*(k , 

the product (Rj*31k having been defined in (1.14). It is easy to show that T is, in- 
deed, an integration rule and that the product of composite rules is commutative, 
associative and distributive. That is, for three rules R1, R2 and R3, 

(R1*R2)f = (R2*Rl)f, 

[(R1*R2)*R3]f = [R,*(R2*R3)]f, 

[R1*( 2R2 + 63R3)]f = (A2R1*R2)f + (t3R,*R3)f, 

so long as, in the third case, R2 and R3 are of the same dimension. 
Cases of particular interest are the conventionally termed n-dimensional pro- 

duct rules 

(R)n = R*R* *. *R. 

For example, if R is Simpson's rule Rs given by equation (1.3), then the three- 
dimensional Product Simpson rule R,93 is 

Rp83 = (Rs)3 = (2&(O) + !R(1))3 

- *(&(O, 0, 0) + 126R(1, 0, 0) + 167t(1, 1, 0) + .yn(1, 1, 1). 

However, there are many n-dimensional rules which are not product rules (though 
all are weighted sums of product rules). These include, for example, the three- 
dimensional centre and vertex rule 

RCV3 = 3R(0, 0) 0) + 3G1(1, 1, 1). 

2. The Error Expansion in One Dimension. In this section we investigate what 
we term the 'error' involved in using a particular rule R. By the convenient term 
'error' we refer to the difference between the exact integral If and the exactly 
calculated approximation R(a )f. We do not include in this paper any discussion of 
rounding or truncation errors. We deal first with the one-dimensional basic rule 
&R(a). An adaption of the Euler-Maclaurin expansion leads to an expansion of 
the error a (a)f - If in terms of the integrals of the even order derivatives of f. 
This expansion is given in (2.7) below. We outline an elementary derivation of 
(2.7) here. We may expand various quantities in power series as follows: 

(R (a)f = a(f(- aa) + f(aa) ) 

(2.1) = 2a{f(0) + a2a f"(O) + a af(iv)(?) + } 

and 

(2.2) If = L f(x) dx = 2a f(0) + _-jf(O) + a f(iv)(O) 
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We eliminate f(O) from these equations to find 

(2.3) 61(a)f - If = 2a {( - a f" (0) + -(4 ! ) 

If we write down (2.2) with f(28) (x) replacing f(x), we find 

(2.4) l f (x) dx = 2af(2#)(0) + a f(2s+2)(0) + 

eliminating f" (0) from (2.3) and (2.4) with 8 = 1 leads to 

Elimination of f~it)(0) between (2.5) and (2.4) with 8 = 2 gives explicitly the 
first two terms of the expansion, namely 

(R(a)f - If = 2{- + } ff (x) dx 

(2.6) a4 7 4| X(V) 

+ 2 a - a2 af ]~flV)() dx+ 

This procedure may be continued indefinitely. The expansion takes the form 

(2.7) M(a)f-If= a ifc2.(a) Jfa2(x) dx, 

where c28(a) are functions of a, two of which are explicitly determined in (2.6). 
For later convenience we define 

(2.8) Co(4)= 1. 

The coefficients c28(a) mlay be determined most easily by using a generating 

function technique. We insert the function 

-(2.9) f(x) =f WcoshE 

a- a 

into (2.7) and carry out the various operations analytically. This leads directly to 
the generating function: 

(2.10) E: C2r(a)o0 - 0 cos a (a, 0).) 
rho sinh 40 

This generating function may be used to find c28(0) and c28(a) for certain rational 
values, in particular, C28( 1) and C20( 1/2). c28(O) is the coefficient of p28 in the power 
expansion of te cosech up. This gives the following value, in terms of the Bernoulli 
numbers. 

(2.11) c2f(0) = (-1)r(22r=2)B2r c/(2r)! 
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We also find directly from the generating function that 

(2.12) c28(1/2) = C2,(0)/2 

and 

(2.13) C28(1) = -c2,(0)/(1 - 2 12r). 

To find C28(a) we rewrite the generating function (2.10) in the form 

(2.14) EC2r(O)402r cosh a!p = EC2r(a),p2r. 

The coefficient of 402r in this leads to an expression for c28(a) in terms of a and c2i (0) 
with t ? s, namely 

2 4 28 

(2.15) C2.(a) = c28(O) + C2a-2(0) + C28-4(O) + * + 2a co(Q) 

Other methods (in certain cases simpler) of finding c28(a) are given in the Appendix. 
Using the properties of Bernoulli numbers, we may show 

(2.16) Lim (-1)r7r2rc2r(a) = 2 cos ar, 

and this asymptotic form is surprisingly accurate for relatively small values of 2r. 
In fact, one may write 

(2.17) C2r(aX) - (cos air + e), 
7r2r 

where I e < .02 for 2r > 6 and I a I < 1. 
Using (2.11) and (2.15) above, we find 

co(a) = 1, 

C2(a) = 2!{-3+ a2} 

(2.18) c4(a) = 4! _72a2 + 4 

c6(a) = 6!{-31 + 7 2 _ 5a4 + a 6 

1 (127 124 2 +98 4 28 6 + 8) 
C8(a) = 8! l15 -3 a 3+ a - a + a3} 

Having discussed the error term for the basic rules i(a) in one-dimensional 
quadrature, we now turn to the composite rules R. Let us calculate the expansion 
of Rf - If. Since 

(2.19) R E Zj(R(aj), 
and 

(2.20) 1 = 

it appears that 
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and the expansion is of similar form to (2.7). We write t 
(2.22) c28(R)= = jc2,(a), 

and find 

(2.23) Rf - If = a2c2(R) ff(2)(x) dX + a4c4(R) ff(4)(x) dx + * - 

We simplify this expression by introducing another linear operator 1328(R), where 

(2.24) 0328(R)f = a28C2s(R) ff(2)(x) dx. 

The operator fOo is identical to I because, as a formal result of (2.8) and (2.22), we 
have 

(2.25) co(R) = 1. 

(2.7) may be written 
00 

(2.26) Rf-If= E Z 28(R)f. 
8=1 

We note that the degree d of a rule R may determine some of the coefficients 
C28(R). If R is of degree d = 2t + 1, then Rf - If is zero whenever f is a poly- 
nomial of degree less than or equal to d. We consider in turn f = x2, x4, * *X(d-1) 
in (2.26) above. These give d linear equations for c28(R) which have the simple 
solution 

(2.27) c28(R) = 0, 1 < 2s < d. 

The construction of high-degree rules may be effected by substituting into this 
equation the expansion (2.22). The equations so found are nonlinear simultaneous 
equations and are simply related to those obtained by requiring the appropriate 
integrals to be fitted exactly. 

3. The n-Dimensional Error Expansion. In n dimensions the general procedure 
is similar to that in one dimension. The generalization of the expansion (2.7) may 
be obtained in an analogous way. We may make the n-dimensional Taylor expansion 

( (aia2 **... an)f = (2a)nf(O, 0, ... , 0) 

(3.1) + (2aO Ea E d2,1282 28, CIx 1112 . . . aOirf 
r=1 7Zos r X-., 2a 0 

the subscript zero on the square bracket indicating that the partial derivative is 
evaluated at the point (0, 0, * , 0); the summation over si includes all sets of 
non-negative integers s, whose sum is r. 

We also use the expansion 

(2a) nair ~ 80X2 OVrf f air i2 f 2. d'x 
(X328.2X22)2 . 

0 dXn28n= ax 28lOX 2x2 ... d ,nx 

(3.2) _0 492r (2a)E 00 2r+2a [ 02r+2sf 
o-1 Zti=o 4x9im+2t 2 

t For notational convenience, C28(a) is written for c28(JR(a)). These numbers are referred 
to as error coefficients. 
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These expansions are the generalisations of (2.1) and (2.4). The coefficients d 
and e are numbers which may depend on a1 , a2, .X , * an Xbut not on a or f. 

We now carry out the same procedure that we have already described in Section 
2. We use (3.2) with r 0 to eliminatefo from (3.1). We then use (3.2) with r = 1 
and different choices of si to eliminate the second-order derivatives in the resulting 
expression. We may carry on this elimination indefinitely to obtain 

(3.3) ,Rf - If = E a25 E C2s 1282. ... 2n ( (R) f X2si ... d 
8-1 28s8 H O ~2 aOX2~8 

where the error coefficients cZ8128 2. ..2.n(R) depend only on the parameters which 
define at, namely, a, , a2 X , * *in 

We define the operator 028((R) as follows: 

(3.4) ~2a(6R)f = a28 E C28122 2sn(.() 2n d 2,92 . . . 2sn 
Zsi=sf CiaX1 CoX22 ... n 

For the purpose of being quite explicit, we write out in full the first few 328(61). 

These are 
n o2 

(3.5) 12(61)f = a2c20o ... ((R) f E AL dnx, 

(3.6) 04(6t)f = a4c400 ... ((R) f a dnx + a4c220 ... (61) | .2 dfH dnx= 

*~~~~ ~~ ~ ~~ 6 n 6t 138(6)f = adc0o0... (61) 1' ~ A d nX + ANc42... (61) [ X 
' 

dnX 
(3.7) H i~~~~~~=1 .JH i=j1 j_1OaXi4CXj2 

+ d6C222...((R) |E E }H I~;;;~ didjdnx. 
i= -l ik=1;k,6i;k& 1 XZ8.8j 2CXk 

The number of subscripts attached to each error coefficient is the same as the number 
of dimensions. Thus, if n = 2, the third group of terms in #6(6&)f, i.e., those with 
coefficient C222(61), does not exist. The number of separate terms in 328(61) in n 
dimensions is (n + s - ) 1!/ (s (n - ) 1!) . 

The expansion (3.3) may now be written 
00 

(3.8) (Rf- If = #29((R)fj 

which is formally exactly the same as in the one-dimensional case (2.26), the differ- 
ence being in the generalisation of the operators 6, I and 32g . 

We now determine the coefficients c281282...282((R) corresponding to the basic 
rule (Ra(ala2 ... a.). We write in (3.3) the function: 

Q 0) ~ ~ 01 
Xia I [a cosh Pn 

(3.9) f(x) = -cosh ?]-2 cosh - 

Carrying out all the implied differentiation and integration, we find 
00 

C28 1282...28~1 2s282 ... * n28- sinh 'P1 sinh '2 ... sinh Vn 8 C1 28 j O . 

(3.10) -= E (pi cosh aP'I (P1P2 cosh aP2'(P2 *. *Pn cosh ap. Vn 
P- * 

-sinh 'P1 sinh 'P2 ... sinh pn. 
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The summation symbol on the right of this equation was defined after equation 
(1.10). Rearrangement of this expression and introduction of the one-dimensional 
generating function G(a, 4p) of (2.10) leads to 

00 

E E C281282s*2nt81 21< 2 2***sp 2t U12 2 .. 2*,2*P1282 . .. (Pn 

(3.11) 8-0 ZIj-8 

= + ! AG(ap^, I v) G(ars, vO02 ... G(ap. Pn w9n) 

with the convention 

(3.12) coo ...o((R) = +1. 

Inserting the expansion for G(a, (p) in terms of the one-dimensional coefficients 
cg,(a), and considering the coefficient of V2eP . . . VA", we find 

(3.13) C2,1282...2.8G1R(ala2 ... an)) = - E C2.1(ap)c28,(ap) ... cu,, ap, 

where the subscript P indicates (as in the definition in (1.11)) that we sum over 
the nI terms obtained by replacing the numbers P1P2 ... P. by the n I permutations 
of 1, 2, * ,n in turn. 

Equation (3.13) may be rewritten 

(3.14) C2 1282...21(R (6tal a2 *. an )) = I ! c2 (al) c20, (a2) ... c2q(a,), 

where qi = 8s,. 
That is to say, we may permute the subscripts 1, 82, ... I, sn instead of the 

parameters a, , a2, * * *, an . Since we sum over all the permutations, (3.14) is 
simply a reordering of (3.13). 

As an example of this formula, we apply it to the face centre rule in three dimen- 
sions RFC3 =R(1, 0,0 ). This gives 

(3.15) C2e,28228.(RFC3) 

= j{C28,(1)c282(0)c2.,(0) + C281(O)C2.2(1)C28,(O) + ca.(0)c,.,(0)cu.,(1)}. 

We note that c200(RFc3) may be evaluated using equations (2.18) and is zero. 
Thus 61(1, 0, 0) is at least of degree three. 

The results extend to composite rules in a straightforward manner, in the same 
way as in one dimension. We write 

(3.16) R = E 

and 
(3.17) 1= 

Then we find, as before, 

(3.18) Rf-If= Z, j(Rf-If), 

and so the expansion is the weighted sum of the expansion of af - If given by 
(3.8) above. We introduce the notation 

(3.19) C281282...2s,(R) = E tjC28122 ... 28 ( R,) 
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and 

(3.20) g28(R) = E iI328((Rj). 

This gives at once 

Rf - If = a28 E C281282 28n(R) f C 282 . . .1 28n 
(3.21) 8=1 28a-8 Hl X1X2 282 

co 

= 2d9s(R)f. 
8=1 

The degree d = 2t + 1 of a rule R is related to the error coefficients C21282. ... 28.(R) 
in a similar way to the one-dimensional relation (2.27). For a rule of degree d 
it is necessary that all functions x1281X2282 . .. Xn28n, where 22si < d, should be inte- 
grated exactly. By writing these functions in turn in (3.21) we find a set of linear 
equations in C28122... .28(R) whose solution is 

(3.22) c2U1282...28n(R) = 0, 1 < Z2s, < d. 

An example is the n-dimensional corner and vertex rule Rcv defined by 

Rcv V3R(o,0, *y * 0) + i(R(1, 12 * * 1 ). 

The error coefficients C2Z1212.. 228n(Rcv) of this rule are then 

C1282 ... 2sn(=Rcv) 2c281282 ... 2n( (R(0, 0, .., ? 0)) 

(3.23) + Mc2812 2...28nQ(6(1, 1, *--, 1)) 

= c281(O)c282(0) . * C28n(0) + 3C28U(1)C282(l) .C28n( 

We note that C200. ..o(Rcv) = 0, and so this rule is at least of degree three. 
Formula (3.13) expresses an error coefficient of the convolution product of 

basic rules in terms of the error coefficients of each one-dimensional constituent 
rule of the product. We now show that a result of this type holds for the convolu- 
tion product of composite rules. We consider the product of rules R("1RR2)... 
Each of these may be expressed in terms of basic rules and we call the coordinates 
required a1, a2, * * , at. Thus 

t 
(3.24) R(n) _ .j~G1(a1) i = 1 

j=l 

In general, some, but not all, of the coordinates hj(i) are zero. Using (3.24) and 
(3.19) we see that 

C281 282... 2n(R( )*R(2) *R (n) 

t t t 

E E E Zt ()(k(2) ... *w()tC28)1l282..28n(GR(aj)*6R(aAc)* .. R 
j=1 k=1 w=l 

Using (3.13) this becomes 
t t t 1 

E E ... j (1 ** .* w 
? 2q (aj)C2q2(ak) * C2Qn(aw), 

j=1 k1 Wl n. p 

where,, as before, 
qi= sp. 



270 J. N. LYNESS 

Rearrangement of the order of summation in this finite sum gives 
IA 

(2)\22 ~l 
- E (a (j'C2 ()j) 

__ k 2(ak) 
. . . ,/ 

w (w 

and this is 

? Ej ~ c2C(R'l))c22(R * c2,q,(Rn). 

Since the qi are a permutation of the si we finally obtain 

(3.25) C2,12 2...28n(R(')*R *R )1 =c-2 (R R(P') )c282(R(P 2 )R) 

This is a generalization of (3.13) to composite rules. This formula is particularly 
useful in the case where R(), R * R are all the same rule R. We find 

(3.26) c2s1282 ... 28n(Rn) -c281 (R)c282(R) . . .C21n(R)c 

Using this equation it is trivial to verify that if R is of degree d so is Rn. The error 
coefficients of the Product Simpson rule 

(3.'27) =p~g- (?(R(O) + P(R(W))n 

are given by 

(3.28) C2s1282 28n (Rps) 
= (3C2s1(O) + 3C2s1(1))(3C282(O) + 3C282(l)) . . . (3C2s.(O) + kC28n(l)). 

This calculation is more straightforward than expanding the product rule and 
determining the coefficients of each term separately. That would lead to an ex- 
pression, whose value is identical to (3.28), but fully expanded as the sum of 2n 
products, each of n terms. 

4. Cytolic Integration. In the practice of numerical integration it is often con- 
venient or advantageous to divide the region of integration into small hypercubic 
cells and to use a simple integration rule in each. (See, for example, Miller [3] (1960), 
or Mustard, Lyness and Blatt [5] (1963).) t 

We suppose that the hypercube H defined by I xi I < a (i-1, * , n) has 
been divided up into r' equal hypercubic subdomains Hjr) (j = 1, 2, * ,n 

each having side length 

(4.1) 2h = 2a/r. 

We may use the same rule R in each subdomain and obtain the final integral by 
adding up the rn contributions so obtained. This, of course, corresponds to using a 
much more complicated rule R(r) over the whole hypercube H. We introduce the 

t The terms cytolic and holistic were introduced by Mustard [6] (1964). Cytolic (Greek: 
KVTOS = vessel) is used to describe integration by division into cells, and holistic (Greek: 
oXos = whole) to describe integration treating the whole domain at once. An equivalent defi- 
nition appears to be that, with the exception of the above-mentioned references, holistic inte- 
gration refers to the integration techniques discussed in the literature and cytolic integration 
to techniques used in practice. 
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notation Ij(r)f for the integral of f over the hypercube Hj(r) and Rj(r)f for the numeri- 
cal approximation to Ij(r)f obtained by applying rule R to this hypercube. 

We illustrate this notation in one dimension. Simpson's rule RS has the form 

(4.2) Rsf = (2[R(O) + 4G1(l))f = 2a{Uf(-a) + 2f3(0) + gf(a)} 

In practice, it is by no means unusual to break the region of integration up into r 
equal smaller regions and use Simpson's rule on each. Thus we might write, in the 
case r = 3, 

Rs (3)f 

(.) 2a 
= 23a {f(- a) + if(-2a) + jf(-la) + 23f(0) + 3f(4a) + f3f(a) + 7ff(a)}. 

This is the sum of three expressions, the first of which is 

=3 
2a 

(4.4) R -f I2 {-f( - a) + Xf(- a) + wf(-la) }. 

Moreover, Rs(3) is expressible as the sum of basic rules. We see that 

(4.5) R_(3) = 161(1) + 4R(R) + 2 
(RQ) + *61(O). 

As rules such as R(r) are in frequent use it is of interest to calculate their error 
coefficients. Calculated in the straightforward way by means of such expressions 
as (4.5) above, this could be quite lengthy. In fact, of course, the error coefficients 
of a rule R() are simply related to the error coefficients of R. We determine this 
relation below. We may write, for the error, 

rn 

(4.6) R(r)f - If = (Rj(T) - Ij(r))f. 
i==1 

The expansion of Rj(r)f - Ij(r)f is given in Section 3 by (3.21) if we replace a by h 
and use the appropriate region of integration Hj. We find: 

=00 2sE 2sf dnX. 
(4.7) Rj(r)f - = Xd h2f h i C2812s2 ...28n(R) ]lx 28l X 2s82 2nd 

8=1 2;sj=8 H . I~ 

We obtain the total error by summing (4.7) with j 1, 2, * * , r8. Since j occurs 
on the right-hand side only in the definition of the region of integration Hi and not 
in the integrand, and these regions are distinct and combine to form H, we find 

00 '2 

(4.8) R(r)f - If = E h 2 E C281282...28n(R)] 2slaX2s d.x. 
S=1 28=,s oxH ... 

.On 

This error expansion is almost identical to the expansion of Rf - If given by (3.3), 
the only difference being that ha2 occurs instead of a2, on the left-hand side. Thus 
we may make use of the operators 2,28(R) of (3.20) to obtain 

f 
~~~~00 

10, 

Rf 

(4.9) R(r)f -If = r28 28 (R)f. 
s-ir 
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This expression is the basis of the "Progressive Procedure" (Lyness and McHugh 
[2] (1963)). The required relations are simply 

(4.10) 328 (R~r) = - 0 p28(R) 

and 

(4.11) C28l282... 28a,(R(r)) - e C281282 ... 28 

5. The Number of Function Evaluations. One of the goals of the analysis of 
integration rules is to determine which rule requires fewest function evaluations to 
obtain a result of particular accuracy or degree. Thus an important property of 
any integration rule R is the number of points at which it is necessary to evaluate 
the function. If the rule is used over a single hypercubic domain to obtain Rf or 
Rjr')f we define vP(R) to be this number. 

It is straightforward to determine the number of points used by a basic rule. If 

(5.1) (a = R(0)no*(R(al)nl * R(a2) 12* . * R(ak 

where 

(5.2) no+nl +n2+ -- +nk=n 

and 
0 <a, < 2 . . . < ak, 

then 

(5.3) v, ((R) no!n s. b2f-? 

The points at which function evaluation is necessary axe different for different 
basic rules. Thus if 

(5.4) R = E R tjaj 

it follows that 

(5.5) Piv(R) = E (Rj) 

In the case of cytolic integration in which the domain of integration is divided 
into rn separate regions, the question of counting the number of points may be 
complicated. We define the effective number of evaluation points per subdomain as 

(5.6) ur(R) = 1P v(R(r)) 

If the rule R uses only points in the interior of each cell, the total number of function 
evaluations required by R(r) is simply 

(5.7) vl(R(r)) = r v (R) 

arid, in this case, 
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However, in practice a considerable reduction in the number of function evalua- 
tions results in cytolic integration by employing a rule R which uses points on the 
boundary of the domain. This is because a single function evaluation at such a 
point provides values for two or more different subdomains. Thus, for such rules, 

(5.9) v, (RIrl) < rnv, (R), 
and the number of points per subdomain satisfies 

(5.10) vr(R) < v1 (R). 

We define 

(5.11) v(R) = lim Vr(R). 
r--0 

In an integration region in which the effect of the boundaries is negligible, it is 
v(R) and not vl(R) which is the pertinent number of points to consider. 

The calculation of 7r and v for basic rules and composite rules follows the same 
lines as the calculation of v1 . In (6.2), if ak (the largest of the as) is not equal to 
one, we have 

(5.12) Vr((R) V((R) - v&Rf). 
If ak is one, we find 

(5.13) Vr((R) (r + ) v((R) 

and 

(5.14) v(@R) =2 (R). 

Again we find for the composite rule R given by (5.4) that 

(5.15) vr(R) = Z vr(ij) 

and 

(5.16) v(R) = Z P(6). 

Y may be very different from v. For example, the face centre rule in three dimensions 
RFc3 and the centre and vertex rule in three dimensions Rc03 are both rules of degree 
three (see (3.15) and (3.23) above) and both give comparable error estimates. A 
decision about which to use may rest on the number of points. We find 

(5.17) Pr(RFc3) = 3(r + 1)/r 

and 

Jr(RCV3) = V,(R(O, 0,0 ) ) + Vr(6( 1,1 11)) 
(5.18) +(r + 1)3 

r 

In particular, 

v1 (RFC3) = 6, 

v1(RcV3) = 9, 

and so over a single domain RFC3 Mnight be preferred. 
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However, 

F(RFc3) = 3, 

P(RcV3) = 2, 

and so over a large subdivided domain the opposite preference might be made. For 
example, if r = 10, we find RFC3) requires 3300 function evaluations and R(vo) re- 
quires 2331. 

This simple example indicates clearly that Gaussian type rules, although superior 
for holistic integrations, may be very inferior for cytolic integrations. The question 
of the sharing of points between subdomains and the design of rules which do this 
are of utmost importance. 

This complicating aspect of the point counting means that we have to take into 
consideration for each rule not merely one number v ((R), but the function v0(R), 
or at the very least the two numbers v, and P. 

In Tables I and II the values of d, v, v and VT are attached to the corresponding 
rule. The n-dimensional product rule (R)' has values of Pr satisfying 

(5.19) vr((R) ) = ( v(R) ) 
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APPENDIX. Properties of Error Coefficients. This Appendix contains certain 
miscellaneous properties of the error coefficients; most of these properties may be 
proved using elementary algebra, and their proof is only briefly indicated here. 

We may derive a relation by the direct substitution of any function and any 
rule into (2.23). For example, if we put f(x) x2", and use R E tj64(ai), we 
find the set of equations 

(A.1) 
E (j c2n _ co + C2 (R) + + c2n-2(R) + can(R) 

(2n)! (2n + 1)! (2n - 1)! 31 11 

TABLE I 

Certain well-known one-dimensional integration rules together with their degree d 
and the values of v, and P. 

In one dimension, VT = (v1 + (r-1)v)/r. 

d v, 

Trapezoidal (R(1) 1 2 1 
One Point 6R(0) 1 1 1 

Two Point Newton Cotes (RQ) 1 2 2 
Three Point Simpson 2(R(O) + LR(1) 3 3 2 

Four Point Newton Cotes 31R(1) + 4IR(1) 3 4 3 
Five Point Newton Cotes AG,(O) + -4-(() + (R(1)5 5 4 

Two Point Gaussian GR(V\) 3 2 2 
Three Point Gaussian 1 (R(O) + 5 (RV(_/3) 5 3 3 
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This relation may be used to find successively the error coefficients for a sophisti- 
cated composite rule R. It is of particular use if the rule is of high degree. 

The values of c28(a) for certain values of a, namely, 0, 2, and 1, rmay be simply 
obtained from the generating function. This is done in Section 2 and the results are 
listed in (2.11), (2X12), and (2.13). To obtain the numerical values for a = * or 
a = we consider the identity (see Section 4): 

(A.2) ((R(i))13) = 2&(J) + 31R(1). 

The error coefficient relation (4.11) and (A.2) above lead to 

( 1 C28(1) 
(A.3) (G()~~ 2 

=-wC2s() + 9C28(1). 

Thus 

(A.4) C2s (3) = 2 (-1 + 3--)c28(1), 

where c28( 1) is given by (2.13). A similar procedure leads to 

(A.5) C29 (-)=2(1 + 32812 2(0). (3 2 +32-1) 

The further exploitation of relations such as (A.2) gives relations between error 
coefficients but not their actual values. 

(A.4) and (A.5) may be derived from the generating function (2.10) directly 
using the identity 

(A.6) 2 cosh 3 f sinh -1 p = cosh 3 h sinh p-sinh icosh p. 
It sometimes occurs that we know the error coefficients of an (n - 1)-dimen- 

sional rule R(n-1) and we are interested in the error coefficients of the n-dimensional 
rule R('- )*R. The relevant result is 

(A.7) C828 2.. 2s,(R i)*R) !E C2sj ..2s - 2si+ 2 n(R( )c2i (R). 
n i== 

This may be proved in the case that R(n-l) and R are basic rules by manipulation 
of (3.11). The extension to composite rules is trivial. 
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